

Deep learning 2: Causality & DL 2.2: Neural causal discovery

Lecturer: Sara Magliacane

UvA - Spring 2022

Causal discovery (structure learning) - simplest setting

С	Ν	GDP
4.5	5	33k
12	30	86k
10	20	46k

Observational data

 $C \not\rightarrow GDP$

[Optional] Background knowledge

UvA Deep Learning 2 (https://uvadl2c.github.io)

Sets of graphs that fit the data and background knowledge

Summary graph

Causal discovery simplified overview

Constraint-based causal discovery

- Conditional independence tests
- Observational data
- Output: MEC

- SGS, PC, FCI

Score-based causal discovery

- Penalised likelihood
- Observational data
- Output: MEC
- GES, MMHC

Restricted models

- Nonlinear additive noise, Linear Non-Gaussianity
- Observational data
- Output: DAG
- RESIT, LINGAM

Interventional causal discovery / causal invariance

- Observational and Interventional data
- Output: parents of Y
- ICP, GIES, JCI

• If P is Markov and faithful to G, then for any disjoint $A, B, C \subseteq V$:

$\mathbf{A} \perp_{G} \mathbf{B} \mid \mathbf{C} \iff X_{\mathbf{A}} \perp_{P} X_{\mathbf{B}} \mid X_{\mathbf{C}}$

- If P is Markov and faithful to G, then for any disjoint A, B, C \subseteq V:

$$\begin{cases} x_{1} = \varepsilon_{1} \\ x_{2} = 3 \cdot x_{1} + \varepsilon_{2} \\ x_{3} = x_{2} - 3 x_{1} + \varepsilon_{3} \\ \varepsilon_{11} \varepsilon_{1} \varepsilon_{3} \sim N(o_{1}) \end{cases}$$

$\mathbf{A} \perp_{G} \mathbf{B} \mid \mathbf{C} \iff X_{\mathbf{A}} \perp_{P} X_{\mathbf{R}} \mid X_{\mathbf{C}}$

 $X_{3} = 3 \cdot X_{1} + \varepsilon_{2} - 3 \times_{1} + \varepsilon_{3}$ $= \Sigma_{1} + \Sigma_{2}$ $X_3 \perp X_1$ $X_3 \not = X_3 \not = X_1$ (ANCELUNG PATHS

• If P is Markov and faithful to G, then for any disjoint $A, B, C \subseteq V$:

$\mathbf{A} \perp_{G} \mathbf{B} \mid \mathbf{C} \iff X_{\mathbf{A}} \perp_{P} X_{\mathbf{B}} \mid X_{\mathbf{C}}$

 Causal sufficiency - no latent confounders (common causes), no selection bias

- If P is Markov and faithful to G, then for any disjoint $A, B, C \subseteq V$:
- Causal sufficiency no latent confounders (common causes), no selection bias

$\mathbf{A} \perp_{G} \mathbf{B} \mid \mathbf{C} \iff X_{\mathbf{A}} \perp_{P} X_{\mathbf{B}} \mid X_{\mathbf{C}}$

• If P is Markov and faithful to G, then for any disjoint A, B, C \subseteq V:

$\mathbf{A} \perp_{G} \mathbf{B} \mid \mathbf{C} \iff X_{\mathbf{A}} \perp_{P} X_{\mathbf{R}} \mid X_{\mathbf{C}}$

- Causal sufficiency no latent confounders (common causes), no selection bias
- **Acyclicity** the underlying graph is acyclic
- Cycles + causal insufficiency: sigma separation, Joint Causal Inference

Causal discovery simplified overview

Constraint-based causal discovery

- Conditional independence tests
- Observational data
- Output: MEC
- SGS, PC, FCI

Score-based causal discovery

- Penalised likelihood
- **Observational data**
- Output: MEC
- GES, MMHC

Restricted models

- Nonlinear additive noise, Linear Non-Gaussianity
- **Observational data**
- Output: DAG
- RESIT, LINGAM

Interventional causal discovery / causal invariance

- Observational and Interventional data
- Output: parents of Y
- ICP, GIES, JCI

Constraint-based causal discovery • If P is Markov and faithful to G, $A \perp_G B | C \iff X_A \perp_P X_B | X_C$

• In a nutshell: we perform a set of conditional independence tests on the data and use them to constrain the possible graphs using d-separation

Constraint-based causal discovery • If P is Markov and faithful to G, $\mathbf{A} \perp_G \mathbf{B} \mid \mathbf{C} \iff X_{\mathbf{A}} \perp_P X_{\mathbf{B}} \mid X_{\mathbf{C}}$

- In general, we can narrow down the possible graphs only up to their Markov equivalence class (MEC)
 - Sets of graphs with the same d-separation statements

• In a nutshell: we perform a set of conditional independence tests on the data and use them to constrain the possible graphs using d-separation

Constraint-based causal discovery • If P is Markov and faithful to G, $\mathbf{A} \perp_G \mathbf{B} \mid \mathbf{C} \iff X_{\mathbf{A}} \perp_P X_{\mathbf{B}} \mid X_{\mathbf{C}}$

- In general, we can narrow down the possible graphs only up to their Markov equivalence class (MEC)
 - Sets of graphs with the same d-separation statements
- We can represent all the graphs in a MEC with a summary graph

• In a nutshell: we perform a set of conditional independence tests on the data and use them to constrain the possible graphs using d-separation

Markov equivalence example

x - z - Y $X \longrightarrow \mathcal{Z} \longrightarrow Y$

 $X \leftarrow Z \leftarrow Y$

UvA Deep Learning 2 (https://uvadl2c.github.io)

Markov equivalence class and CPDAGs

- We can represent the skeleton and the orientations (edge marks) all DAGs in a MEC with a Complete Partially Directed Acyclic Graph (CPDAG):
 - $i \rightarrow j$ if all DAGs in the MEC have $i \rightarrow j$
 - i j if some DAGs in the MEC have $i \rightarrow j$ and others have $j \rightarrow i$

SGS algorithm (Spirtes, Glymour, Scheines)

- Assuming P is Markov and faithful to an unknown graph G
- We can estimate a CPDAG from samples of P in three steps: 1. Determine the skeleton if $\exists \mathbf{S} \text{ s.t. } X_i \perp X_j \mid X_{\mathbf{S}}$, then $i \neq j$
 - 2. Determine the **v-structures**
 - new v-structures"

if $i - j, j - k, i \neq k$ and $\exists S$ s.t. $X_i \perp X_k \mid X_j \cup X_S$, then $i \rightarrow j \leftarrow k$ 3. Direct as many remaining edges as possible using "acyclicity" and "no

PC algorithm (Peter Spirtes, Clark Glymour)

- Assuming P is Markov and faithful to an unknown graph G
- We can estimate a CPDAG from samples of P in three steps: 1. Determine the skeleton in an optimised way
- - Use the nodes that are adjacent, Adj(i) or Adj(j) in U at a given iteration (superset of the parents)
 - 2. Determine the **v-structures**
 - 3. Direct as many remaining edges as possible
 - https://www.researchgate.net/publication/242448131 Causation Prediction and Search

Causal discovery simplified overview

Constraint-based causal discovery

- Conditional independence tests
- Observational data
- Output: MEC
- SGS, PC, FCI

Score-based causal discovery

- Penalised likelihood
- Observational data
- Output: MEC
- GES, MMHC

Restricted models

- Nonlinear additive noise, Linear Non-Gaussianity
- **Observational data**
- Output: DAG
- RESIT, LINGAM

Interventional causal discovery / causal invariance

- Observational and Interventional data
- Output: parents of Y
- ICP, GIES, JCI

Score-based causal discovery

S(G, D) (fit of graph G on data D)

Score-based causal discovery: find the graph that maximises a score

Score-based causal discovery

- S(G, D) (fit of graph G on data D)

Score-based causal discovery: find the graph that maximises a score

• Typically we use **BIC** (Bayesian information criterion) $BIC(D,G) := 2 \cdot \log p(D \mid G, \theta^{MLE}) - \log(n) \cdot \#$ parameters member of data points

Score-based causal discovery

- Score-based causal discovery: find the graph that maximises a score S(G, D) (fit of graph G on data D)
- Typically we use **BIC** (Bayesian information criterion) $BIC(D,G) := 2 \cdot \log p(D | G, \theta^{MLE}) \log(n) \cdot \#$ parameters member of data points • Score equivalence: all DAGs in a MEC get the same score • **Decomposable:** we can decompose the score as the sum of the contributions for each variable and its parents
- - Local consistency

Number of DAGs with n nodes ?

A003024 as a simple table

n	a(n)
0	
1	
2	
3	
4	
5	
6	
7	
8	
9	121
10	417509
11	3160345939
12	52193965134382
13	1867660074443203518
14	143942814104439833494179

Greedy Equivalence Search (GES)

- Optimise Bayesian Information Criterion (BIC) greedily (take best scoring) neighbour iteratively)
- Reduce search space by searching over CPDAGs instead of DAGs
- BIC is score-equivalent, so DAGs in same Markov equivalence class (so represented by same CPDAG) have the same score (so you can pick any)
- It can be shown that searching over CPDAGs with local consistency allows us to find the **global optimum** (in large sample limit)

Greedy Equivalence Search (GES)

- 1. Start with empty CPDAG
- 2. Add edges one by one until local maxima in BIC 3. Remove edges one by one until local maxima in BIC

Phase 1 neighbours ε^+ : ℓ de composability helps us to recompute only one pactor

Phase 2 neighbours ε : same with removing an edge

- Given a a starting equivalence class ε , another class ε' is in the neighbours ε^+ if there exists a DAG $G \in \varepsilon$, such that adding an edge to G results in $G' \in \varepsilon'$

Differentiable causal discovery

- Observational data linear NOTEARS
- Observational data nonlinear DAG-GNN
- Observational + interventional data ENCO

UvA Deep Learning 2 (https://uvadl2c.github.io)

Differentiable score-based methods: NOTEARS

Non-combinatorial Optimization via Trace Exponential and Augmented lagRangian for Structure learning

• Linear SCM for $X = (X_1, ..., X_d)$: $X_{i} = w_{i}^{T} \cdot \mathbf{X} + Z_{i}$ for i = 1, ..., d $W = \begin{bmatrix} w_1 & w_2 & \dots & w_d \end{bmatrix}$

Differentiable score-based methods: NOTEARS

Non-combinatorial Optimization via Trace Exponential and Augmented lagRangian for Structure learning

• Linear SCM for $X = (X_1, ..., X_d)$: $X_i = w_i^T \cdot \mathbf{X} + Z_i$ for $i = 1, \dots, d$ $W = \begin{bmatrix} w_1 & w_2 & \dots & w_d \end{bmatrix}$

> $\min_{W} \ell(W; X) \qquad \stackrel{?}{\longleftrightarrow}$ s.t. $G(W) \in DAG$

(combinatorial 😡)

https://arxiv.org/pdf/1803.01422.pdf

 $\min_{W} \ell(W;X)$

s.t. h(W) = 0(possibly with a simple gradient)

Differentiable score-based methods: NOTEARS

Non-combinatorial Optimization via Trace Exponential and Augmented lagRangian for Structure learning

• Linear SCM for $X = (X_1, ..., X_d)$: $X_{i} = w_{i}^{T} \cdot \mathbf{X} + Z_{i}$ for i = 1, ..., $W = \begin{bmatrix} w_1 & w_2 & \dots & w_d \end{bmatrix}$

> $\min_{W} \ell(W; X) \qquad \stackrel{?}{\longleftrightarrow}$ s.t. $G(W) \in DAG$

(combinatorial 😡)

https://arxiv.org/pdf/1803.01422.pdf

$$\displaystyle rac{1}{2n} \|\mathbf{X}-\mathbf{X}W\|_F^2 + \lambda \|W\|_1.$$

Causality & DL - Neural causal discovery

Differentiable score-based methods: NOTEARS

• Linear SCM for $X = (X_1, ..., X_d)$: $X_i = w_i^T \cdot \mathbf{X} + Z_i$ for $i = 1, \dots, c$

> $\min_{W} \ell(W;X)$ s.t. $G(W) \in DAG$

(combinatorial $\widehat{\mathbf{W}}$)

 $h(W) = \mathrm{tr}\left(\right)$

Extension to nonlinear case: https://arxiv.org/abs/1909.13189

$$d; W = [w_1 | w_2 | \dots | w_d]$$

$$\stackrel{?}{\Longleftrightarrow}$$

 $\min_{W} \ell(W;X)$

s.t. h(W) = 0

$$\left(e^{W\circ W}\right) - d = 0$$

Differentiable score-based methods: DAG-GNN

$X = A^T X + Z$ $X = (I - A^T)^{-1} Z$

 $X = f_2((I - A^T)^{-1} f_1(Z)) \qquad Z = f_4((I - A^T) f_3(X))$

https://arxiv.org/pdf/1904.10098.pdf

Differentiable score-based methods: DAG-GNN

$X = A^T X + Z$ $X = (I - A^T)^{-1} Z$

$X = f_2((I - A^T)^{-1} f_1(Z)) \qquad Z = f_4((I - A^T) f_3(X))$

https://arxiv.org/pdf/1904.10098.pdf

Differentiable score-based methods: DAG-GNN

$$X = A^T X + Z \qquad \qquad X = (I - A^T X + Z)$$

 $X = f_2((I - A^T)^{-1} f_1(Z)) \qquad Z = f_4((I - A^T) f_3(X)).$

Max ELBO + equality constraint: for given $\alpha > 0$, tr[(I + $\alpha \cdot A \odot A)^d$] – d = 0

https://arxiv.org/pdf/1904.10098.pdf

 $(A^{T})^{-1}Z$

Differentiable score-based methods: ENCO Efficient Neural Causal Discovery without Acyclicity Constraints

Assumption: Single node interventional data (perfect) for all variables ullet

Differentiable score-based methods: ENCO Efficient Neural Causal Discovery without Acyclicity Constraints

- Assumption: Single node interventional data (perfect) for all variables \bullet
- Central idea: learn distributions $p(X_1 | ...)$ from observational data, test generalization to interventional data
- Parametrize graph with edge existence and orientation parameters

• Probability of an edge:
$$\sigma(\gamma_{ij}) \cdot \sigma(\theta_{ij})$$
, with $\theta_{ij} = -$

Benefits of two-variable parameterisation:

 \Rightarrow More control over gradient updates

 \Rightarrow No constraint or regularization for acyclicity needed!

 θ_{ji}

https://arxiv.org/abs/2107.10483, slides by Phillip Lippe

Differentiable score-based methods: ENCO

Distribution fitting

Learn neural networks by fitting conditional distributions on observational data

Efficient Neural Causal Discovery without Acyclicity Constraints

Graph fitting

Learn edge and orientation parameters based on fitted distributions

https://arxiv.org/abs/2107.10483, slides by Phillip Lippe

Differentiable score-based methods: ENCO Efficient Neural Causal Discovery without Acyclicity Constraints

https://arxiv.org/abs/2107.10483, slides by Phillip Lippe

UvA Deep Learning 2 (https://uvadl2c.github.io)

Side note: Varsortability

